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Abstract

The mathematical models of many
dynamic systems of interest in the aerospace
industry are inherently complex and of high
order. Rather than grapple with the full-
complexity models for such systems, the control
designers often elect to derive low-order, reduced-
complexity models for which a control system
can be designed. The subject of model-order
reduction has received a significant amount of
attention in control engineering literature. This
paper describes and demonstrates a novel active-
control methodology that can be used to design a
control system that automatically forces the
original system to behave like a chosen reduced-
complexity model by treating the effects of the
original complexity-related terms as disturbances
acting on the reduced-complexity system. The
method is demonstrated by several worked
examples involving both linear and nonlinear
systems, supported by simulation results.

In ion

The difficulty in developing high-order
models for compiex systems in the aerospace
industry has been facilitated by the emergence of
high-speed digital computers and automated
modeling software. The realistic behavior of
even extremely complicated systems can now be
effectively modeled using finite element analyses
and/or complex system simulations embodying
relevant characteristics such as nonlinearities,
coupling, time-varying parameters, large
numbers of inputs and outputs, time delays, and
input-derivative terms. Most models of complex
systems are inherently high-order, even when the
other complexities identified above are eliminated
via linearization, estimation, or prudent
disregarding of the offending terms.
Consequently, the control system designer must
often cope with unwieldy, high-order models
which lead to the design of inordinately high-
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order control systems. Although, in theory, the
controller developed provides the desired
performance, implementation of the full-order
controller is sometimes not practical.

In recent years, a considerable amount of
research effort has been directed towards the
problem of developing reliable order-reduction
techniques for both mathematical system models
and their associated controllers. Reduction in
model order generally leads to a simpler, lower-
order controller design, thereby increasing the
feasibility and practicality of implementation and
potentially reducing cost. The subsequent
reduction in the degrees-of-freedom associated
with the reduced-order mode! aids in the designer's
visualization and understanding of the system and
may lead to further insight into a control system
design. Typically, the complexity of a model is
reduced by first eliminating or simplifying
nonlinearities, coupling effects, time-varying
parameters, and other complicating factors. The
model is then further simplified by reducing the
order of the less complex model via frequency
domain or state-space techniques. Control
systems designed in this manner can provide
acceptable performance in principle. However, in
some instances the controller may require further
tuning to improve performance, or may
necessitate the addition of filters to eliminate the
effects of unmodeled dynamic modes that interact
with the control system in an undesirable
fashion.

The technique presented and illustrated
in this paper constitutes a new and innovative
way to achieve effective reduction of model-
complexity by active control. The examples
presented are simple engineering examples,
however they demonstrate the potential for
application of this method to more complicated
systems. The traditional approach of first
reducing the model-complexity and then
designing the control system provides no
mechanism whereby the credibility of the



reduced-complexity model (RCM) is guaranteed.
The term "reduced-complexity” is used in place of
"reduced-order” because the Model Complexity
Reduction by Active Control (MCRAC) method
produces a controller that is inherently capable of
eliminating or minimizing the undesirable effects
of phenomena such as coupling and nonlinear
terms, as will be demonstrated via example
problems. The method links the model-
complexity reduction with the controller design
method such that upon implementation of the
controller, the credibility of the assumed RCM is
automatically enforced by the controller actions,
thereby achieving a new level of effectiveness in
applying the classical linearization techniques.

The proposed method employs
"disturbance observer” theory to generate real-
time estimates of the time-domain effects of the
unwanted terms associated with model
complexity. The total control effort is divided in
such a way that part of the controller action
annihilates, or minimizes, the disturbing effects
of the model-complexity terms on the time
response of the system. The other part of the
control effort provides the desired closed-loop
system performance. The control system
designer is thus free to tailor the desired RCM
and develop a control strategy such that the
closed-loop RCM meets the desired performance
goals and rejects disturbances acting on the
system. The following sections present details
of the method followed by three illustrative
examples. Included in the Summary and
Conglysions section are plans to extend the
method to more complicated problems.

Model Complexity R ion

Model complexity reduction is more
generally referred to as model order reduction and
is considered to be the reduction of the dynamic
order of the model. Given a system of order n,
the goal of the model order reduction process is
to derive a model of order k, where k<n, such
that for a given input, the reduced-order model
output(s) closely tracks that of the full order
system model. An error norm is examined to
determine the accuracy of the reduced-order model.
A plethora of methods exists by which this may
be accomplished using time- and frequency-
domain techniques as indicated in the extensive
bibliographies in References 1 and 2. Indeed this
area of model simplification has garnered the
majority of the attention of researchers in this
area. Techniques including balanced realization,
component mode synthesis, aggregation
methods, perturbation methods, and continued

fraction methods have been developed to
accomplish the task.

Less frequently addressed are other
aspects of model complexity reduction. These
include approximation procedures for dealing
with nonlinearities, time-varying parameters,
coupling, and the number of system inpults.
System nonlinearities are typically addressed by
conventional linearization about a nominal
operating point (or points) or a nominal
trajectory. Functional linearizations such as
describing functions may also be employed.
Time-varying parameters are typically eliminated
by using averaging methods or frozen-time
eigenvalue methods. Coupling effects are
sometimes ignored based on the assumption that
they manifest fast transients. Coupling is also
eliminated from high-order models using
transformations to alternate coordinate systems,
such as modal coordinates. The transformation
masks the existence of coupling and the
transformed model is then more easily reduced for
controller design. For systems with a "large”
number of inputs, often the number of inputs is
reduced for simplification of the design via a
fixed coordination of multiple control inputs or
by ignoring certain disturbance inputs. Multiple-
input multiple-output techniques are currently
enjoying a much wider application to this
modeling aspect.

The MCRAC design philosophy is that
a linear controller for the original full-complexity
system model, M, can be designed using a
judiciously chosen reduced complexity model, m,
such that the resulting controller, u(m), provides
performance which meets a given set of closed-
loop specifications when implemented with the
original system model, M. Furthermore, the
action of u(m) enforces the RCM selected and
guarantees the desired performance of M. The
reduced complexity model is of lower order than
the original and is linear. The resulting control
design is, in general, of lower order than one
designed using the original model.

Assume that M has the standard state
space form given in equation (1) below, where
the matrix A may be time-varying, nonlinear,
highly coupled, or embody other complexities.

x = F(x,t,u,w)
x = AX + Bu + Fw + ho.t's 4))

y=Cx



In the equation above, x is the state variable, u is
the control variable, w is an external disturbance,
y is the output, and "h.o.t.'s" stands for higher
order terms which arise from classical
linearization. A reduced complexity model may
be developed from (1) in the following manner.
A linear RCM system matrix A, and the state

vector Xy are selected by the designer to embody
the primary dynamics to be controlled. If X is
defined as the state vector which embodies the
secondary dynamics, then the full system model
can be written as given in equation (2) which, for
now, ignores the h.o.t.'s derived from
linearization.

X= [ Ar A"k :') + Bu(m) + Fw

Au A @)

Y= Cex+

The reduced complexity model is now given by

Xr = AXr + AnXs + Bu(m) +Fw

y = Cexe
@A)

with the dynamics of xg determined by equation
(4) below.

)-(s = AaXe + AeXs (€))

Before explaining how the effects of the
secondary dynamics are handled in the design, the
structure of the controller u(m), given in equation
(5) below, is examined.

u(m) = up(m) + ua(m) +uc(m) (5)
where

up(m) = control providing desired response
ua(m) = control for external disturbances
uc(mn) = control for system complexities.

Note that the total control effort u(m) is divided
into three parts, the primary part up(m) that
provides the desired closed-loop system response,
the disturbance accommodation part, ug(m) that
is designed to cancel or minimize external
disturbances, and the RCM part uc(m) that is
designed to cancel or minimize the effects of the
unmodeled modes, nonlinearities (or h.o.t.'s
resulting form linearization), and other
complexities on the behavior of the reduced-
complexity system. Those effects are viewed as
time-varying disturbances, and thus uc(m) can be
designed using Disturbance Accommodating

Control (DAC) methods.[3] Consider the
external disturbance term and recall that for
cancellation

-Brug(m) =Fw | 6)

The disturbance w is modeled in state-space form
as

z=Dz+ G @)
w = Hz.

In equation (7), z is the state of the disturbance w
and D is the system matrix governing the
dynamics of z. The matrix D is developed
directly from the time-domain or differential
equations defining the waveform structure of w.
The o are Dirac impulses which arrive at random
intervals with random intensities. The derivation
of the matrix D is explained thoroughly in the
reference. From equation (6), disturbance
cancellation occurs when

ug(m) = -B'FHz (8)

which requires that
rank(B] = rank{BIFH], 9

If the disturbance dynamics described in equation
(4) manifest a waveform structure, which is
typically the case for physical systems, then
uc(m) can be designed using the same principles
as described above for the external disturbances.
A disturbance state model is developed based on
the waveform structure of xg leading to the
development of a state disturbance model as in
equation (10).

zs=Dszs + G
X, = Hz, (10)

Therefore, for cancellation,
uc(m) = -By AsHz, a1

with the rank condition as indicated in equation
(9) satisfied. When full cancellation occurs, the
dynamic order of the system is reduced. The
control uc(m) must eliminate the effects of the
coupling term, or nonlinear terms (demonstrated
in the third example in the following section),
without destabilizing the system. )

The total control action u(m) can be divided into
additional parts, as required, to control any other
disturbances that may act on the plant. The



up(m) part of the controller is designed using the
engineer's method of choice so long as the
controller meets the performance requirements.
A composite observer is designed using standard
observer theory to estimate the system states
required for controller implementation as well as
the effects of the unmodeled dynamics and
disturbances. The observer order generally
determines the order of the controller, therefore,
care must be taken when selecting the disturbance
model for the full-order model complexities. The
choice of the disturbance model will be discussed
in the following section. The outputs of the
observer are used with the appropriate gains,
calculated using the RCM, to implement u(m).
The method will be demonstrated and elaborated
upon using three simple examples in the
following section.

I ive Exampl

Three design examples are presented here
to demonstrate the concept of the MCRAC
method for controller design. It is emphasized
that the results shown here are preliminary, but
show a high degree of promise for the method.
All examples are single-input, single-output
systems with the assumption of co-location of
the sensor and actuator. It is further assumed that
the complexities removed from the full-order
model may be modeled as an input disturbance.
The first example comprises an eight-order
spring-mass system. The second example is a
highly-coupled sixth order system which
simulates a flexible beam. The third example is
a nonlinear second-order system.

Shown in Figure 1 is a diagram
representing an eighth-order dynamic spring-mass
system, which is the focus of the first example.
The values of the masses and spring constants
used in this example are given below the diagram
in Table 1. The control objective is to move m}
to a given set point position and hold it there,
regardless of the motion of the other three
masses. Note that

yl Yl

- 4 - g
ky k,

m, WAL M

Figure 1. Spring-mass system for Example 1.

mi =10 k1=5
m2=35 ko =10
m3 = 2.5 k3 =35
mg =5 kg =125

Table 1. Parameter values used in Example 1.

there is no damping in the system so that the
masses m?, m3, and m4 will continually
oscillate. It is assumed that the position of m}
can be sensed and that the control action is
appliedatmj.  The equations of motion were
derived and are given below in equations (12).

y1= '(k——lr;lkz ) y1+ —%}'2 + -"3—111
y2= -3%)’1 -(———k2r; 2k3)yz + Il%ya
y3 = i—zyz -(k——3r;3k4) y3 + %m
V4 = ;n%m - ;—in a2

The eight-order model was cast in state space
form for complexity reduction and control design.
Because the goal of the closed-loop controller is
to move mj o a particular position and hold it
there regardless of the motion of the other
masses, the reduced-complexity second order
RCM, m, given in equations (13) below was
selected. In this equation, yr represents the
variable y1, therefore, the primary states for the
system are those associated with yj. The
motion of the other masses and the resulting
forces imparted on m] are secondary and are
modeled as a disturbance input wg, which equates
10 Xxg in equation (10).

jre KLrK2y o 1 ym) + K24y
m m m
(13)

The control input u(m) is divided as in equation
(5) except that there is no ug(m) term as no
external disturbances are considered. The primary
control up(m) is designed such that the closed-
loop response of m manifests the integral time
absolute error (i.t.a.e.) response characteristics.
The ideal design model is given in equation (14)
below.

§m + 1.4(!)09:!\ + (D(Z)Ym': Ysp (14)



To design up(m), the standard set point error
dynamics are examined for the ideal model and
the RCM. When the error dynamics are equated,
the gains for up(m) are generated. The resulting
controller providing i.t.a.e. response
characteristics for the RCM is given below (for
the parameter values given in Table 1).

up(m) = 10(wp -1.5)(ysp-y1) - 1400y1 + 15ysp
(15)

For wp=10,
up(m) = 1000ysp - 985y1 - 1401 (16)

The character of the disturbance acting
on m] is of waveform structure because of the
sinusoidal motions exhibited by spring-mass
systems. Therefore, the principles discussed in
the previous section may be applied to develop
the model of the disturbance for incorporation
into the observer design. The motion of the
system is sinusoidal, and certainly the
disturbance may be modeled as a linear
combination of sinusoidal functions of proper
frequency. However, to be more general and to
allow for unforeseen parameter variations, the
spline disturbance model given in equation (17)
is selected. The variable t is time and the cj's are
arbitrary constants.

w,=c112+02t+C3 (17)

The resulting "disturbance” state model is given
in (18) where Dg and H are defined shortly.

72s=Dz, + O
ws = Hzg (18)

For cancellation of the effects of the model
complexities, the rank condition given in
equation (11) must be satisfied, which is the case
for this example. Therefore, the expression for
uc(m) is derived immediately in equation (19).

uc(m) = -By! AsHz,

Uc(m) = '( 0 my 0 Zy = -k2z1
k0
mi 19

An observer is designed using the
composite dynamics involving m and the
disturbance model for controller implementation.

The composite dynamics state model is given in
equations (20).

2L 5 [Gk 0

—AX+Bu+ {g)
y=Cx (20)
where
0 1
Ar= O
{k1+k2 0 B, =
my 1
Y ml
A=0 00 010
kg 0 D, = 001]
my , 000
C=[10000]

The observer design equation is given in (21},
where Agj are the observer poles, placed for this
design at Aoj= —20, and Ky are the observer
gains to be calculated.

del{(z +K0) - leil} =0 @1)

The design procedure for such observers is
detailed in the DAC reference cited above. The
resulting estimator, and thus controller, is 5th
order. The numerical values of the gains for the
state and disturbance estimates, indicated by the
carets, for the closed-loop system are given in
equation (22). Note that the disturbance
derivatives are not required in the controller.

u(m) = 1000y.p -985%1 - 140%2 - 1021 (22)

The plot in Figure 2 is a plot of the
response of the full-order system model when
controlled by u(m) as designed above. In the
figure, the system output is the solid line, the set
point is the dashed line, and the estimate of the
output is another dashed line which tracks the
true output exactly. Figure 3 is a plot of the
disturbance (solid line), its estimate (tracks
exactly the disturbance signal), and the control
signal (dashed line). The control signal has been
scaled in the plot to that it is evident that the
controller is tracking the disturbance dynamics,



caused by the oscillations of the masses m2,
m3, and m4 and providing a signal which
eliminates the effects of these oscillations on the
position of mj. To test the robustness of the
design to full-order model parameter variations, a
series of simulations was executed while varying
the mj's and kj's for the system. The plot in
Figure 4 shows that the system continues to
track the set point input even with the system
matrix parameters varied by 100%. No change to
the control gains or the observer were made to
achieve this result.
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Figure 2. Set Point response with MCRAC
controller.

Example 1 Disturbance and Scaled Controller Action

z, z-estimate, u(m)/10

Figure 3. Control Signal and Disturbance.

The second example, diagramed in
Figure 5, focused on a simple model of a
vertically suspended flexible beam. For
simplicity, the beam is modeled as three rigid
beams with torsional springs at the joints.
Small angles are assumed in deriving the
equations of motion for the sixth order system.
The controller goal is to maintain 63 at zero
degrees regardless of the motion of the other two
rigid members. The system is highly coupled.
The equations of motion for the system were
derived using the Lagrange method and are
presented in equations (23), with the definition of

terms as indicated in figure 5 and the rj equal to
the midpoint of each beam as measured from each
joint.

6 Example | System P varied by 100%
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Figure 4. Response with full-order model
parameters varied by 100%.

Figure 5. Rigid link "beam" model.

él(ll+m1rf+(mz+m3)lf') + éz(mzllr2+m31112)
+ Oamslars + (migr+magli+magl)8;
+Ki8; +K28:1 - K28, =0
8:(Iz+mari+ms13) + 6y (malir+malilz)
+ 63malars+ (magra+magli+msgla)©2
+ K282 - K281 + K382 -KaB3 =0
€3(I3+mar3) + O1mslirs

+ ©;malars + magri©s .
-K382 + K383 =0 (23)

After obtaining a general expression for the
mass and stiffness matrix, numerical values were



substituted and the full-order state space model M
derived. For the results shown below, mj=12,
Ii=1, kj=10, and the length of each beam was set
to 1. The RCM selected for this example was a
simple second-order system involving the states
for 63, The model took the same form as that for
Example 1. The same disturbance model was
selected and the observer designed in a similar
fashion to that in the previous example. The
controller u(m), designed using m, was then
implemented with the full-order model. In the
simulation, the controller is activated at t=2
seconds. The plot shown in Figure 6 is the 83
closed-loop response and the estimate, which
tracks exactly. Figure 7 is a plot of the motion
of 81 and 62 .

Example 2 Theta3 and Estimate

theta3, theta3-estimate

Figure 6. Closed-loop response for Example 2.

Example 2 Motion of Theta] and Theta2

thetal, theta2

Figure 7. Motion of 81(solid line) and 62
(dashed line).

Shown in Figure 8 is the control signal.
Note that the controller produces a signal which
cancels the effect of the motion of the upper two
beam elements on the third. The controller is
designed to accommodate all coupling effects and
higher order terms as described in the previous

section. These are estimated and eliminated
through the MCRAC action.

00 Example 2 Conirol Signal

u(m)

Figure 8. Control signal for Example 2.

The third and final example involves the
nonlinear second-order system given in equation
(12).

y+(1 +)'!2)sin wy=0 (12)

The nonlinearity is the product of a sine function
and the square of the derivative of the output y.
The RCM chosen for this example was a simple
double-integrator. An i.t.a.e. controller was
designed for the RCM. The disturbance model
selected to eliminate the effects of the nonlinear
term is again a second-order spline implying a
third-order disturbance model. The resulting
controller is fifth order. The curves plotted in
Figure 9 below indicate the system closed-loop
response with u(m) in the loop with the full-
complexity model. The initial conditions on the

system are (y,¥) = (1,0), the extremes on © are
-100 < ® < 100, and selected curves are plotted.
The controller action is initiated at =2 seconds.
Similar results are obtained for varying the initial
conditions on y and its derivative.

A controller was designed using a
linearized plant model for equation (12) and a
similar set of simulation runs executed. The
domain in which the controller, designed using
the linearized model, produced acceptable results
was -5 € ® < 5.484. The controller designed
using MCRAC ideas provides a substantially
improved operating range over parameter
variations.



Example 3 Variations on Omega

Figure 9. Closed-loop response of nonlinear
plant as @ is varied from -100 to 100.

Summary and Conclysions

The Model Complexity-Reduction by
Active Control methodology has been introduced
in this paper. The method shows potential for
application to systems in which the assumptions
described in the previous examples hold. That is,
single-input, single-output systems with a co-
located semsor and actuator pair. It is also
assumed that the complexities removed from the
full-order model may be modeled as an input
disturbance. The controllers derived are of lower
order than those derived using the full-complexity
models for the two dynamic system examples and
much higher order for the nonlinear system.
However, the improvement in performance of the
higher order controller over the second order
controller designed using the linearized model for
example 3 is significant. In all example cases,
parameter variations of significant magnitude
may be imparted on the full-order system matrix
with virtually no effect on system performance.

Future research will be directed toward
further development of the theory and to the
application of MCRAC principles to more
complex systems for which the assumptions
listed above do not necessarily hold. Based on
the results presented in this paper, the method
holds promise for application to the class of
problems discussed.
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